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Fuel Cell Task Assignment

Contract DA-49-186=-502-0RD-860
Revised Scope of Work - ORDTL~CB-762

HARRY DIAMOND LABORATORIES

Task 1 - Energy Transformation Systems

Conduct theoretical and experimental investigations to define
the mechanisms and control parameters of gas diffusion electrodes in
fuel cells. Work will include, but not be limited to

1. Establish a mathematical model of the overall diffusion
process including terms for contributions of known mechanisms in
porous media.

2. Develope expressions for contributing mechanisms which
contain the physical properties of the reactants and products, and
the p_hy_sical properties and geometrical parameters of the electrode.

3. Conduct experimental work to verify the mathematical model.
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1.0 SUMMARY

Previous work on mass transport limitations of poro;s gas diffu-
sion electrodes (1) was extended to consider the case where the
penetration of the electrolyte into a single cylindrical pore is
greater than the radius of the pore so that the liquid in'the pore
can be considered a semi-infinite cylinder.

An elliptical concentration profile was used in this work to
represent the composition in the gas-liquid interface. The ﬁajor
assumptions of the model are:

1. Single pore of uniform circular crosé.section.

2, Electrolyte penetration much greater than pore radius.,

3. Instantaneous, complete, and irreversible reaction at
surfaces wetted by electrolyte.

4, No reaction at dry surface.

5. Cylindrical symmetry.

6. Gas-liquid equilibrium at the interface.

The results of this work indicate that the maximum current
density supportable by mass transfer is greater in the case of a
semi-Infinite cylinder than that deduced for a semi~-infinite
annulus. For an oxygen-water system this model predicts a maximum
current density of 5.1 amps/cm2 at the optimum radius of 2.15 x 10-6

cm; for the semi-infinite annulus a maximum current density of 1.45

amps/cm2 occuring at an optimum pore radius of 1.86 x 10”6 cm was

- found.
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It was found that for a pore penetration of one pore diameter,
dissolved gas reaching the pore walls wetted by the electrolyte
amounted to 99.3% of the gas ;rossing the gas=-liquid interfaée.

This result indicates that a penetration on only one pore diameter
is sufficient to make the semi-infinite cylinder the effective

model.
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2,0 _INTRODUCTION

The model of a porous gas diffusion electrode controlled by
mass transfer which was the subject of a previous report (1) has
been modified to consider the case where the electrolyte penetrates
an appreciable distance into the pore so that the cylinder of
liquid electrolyte inside the pore can be considered semi-infinite
in length.’

The approach of considering the several steps involved in
the total electrochemical process to be in series has been main-
tained. Furthermore, instantaneous and irreversible electron
transfer at the reactive site, and mno back diffusion of reaction
products have been assumed.

The model under comnsideration in this investigation assumes
that the inner pore walls become reactive when they are wetted by
the electrolyte. Essentially all of the other assumptions of the
preceeding report are considered applicable to the present model.

The principal objective of this work was to determine the
conditions under which the current demsity resulting from the flow
of oxygen through a single cylindrical pore into a semi-infinite
cylinder of non-volatile electrolyte'(which in other respects was
assumed to act like water) was a maximum. Another objective was
to determine the extent of penetration which would wvalidate the

assumption of the semi-infinite reactive cylinder.




3.0 MASS TRANSFER IN A POROUS EILECTRODE

3.1 Description of the Model

The model which was the subject of this work can be described
as follows:

Pure oxygen flows through a pore of uniform circular cross-
section by a combination of Poiseuille and Knudsen flows (surface
flow is treated separately), followed by diffusion through a plane
gas-liquid interface located in the pore due to the\penetration of
the electrolyte into the pore. The penetration of electrolyte into .
the pore is sufficiently great so that the electrolyte in the pore
may be considered a semi-infinite cylinder; in principle the pene-
tration is much greater than the radius of the pore. The reactive
area is assumed to be that part of the pore wall which is wetted by the
electrolyte., The oxygen diffuses from the gas-liquid interface to
the pore walls where an instantaneous and irreversible electro-
chemical reaction occurs. It is further assumed that the reaction

products do not affect the diffusion field of the dissolved oxygen.

3.2 Flow of Oxygen in a Pore

The flow of gases through a pore of small diameter may be des-
cribed by three different mechanisms each of which prevails at
different gas pressures.

1. Poiseuille flow is bulk flow due to a pressure gradient and

occurs when the diameter of the pore is very much larger than the

mean free path of the molecules of the gas.
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2. Knudsen.flow, occurs when the diameter of the pbre is smaller
than the mean free path of the molecules of the gas.

When the diameter of the pore is of a magnitude comparable to
the mean free path of the gas molecules, both Poiseuille and Knudsen
flows must be considered. |

3. Surface flow 1is due to the migration of adsorbed molecules
owing to a concentration gradient on the surface. The contribution
to the total flow of this phenomenon is negligible for a pore diameter
of the order of the mean free path of the molecules of the fluid (9)
and will be neglected in the mathematical analysis of this model.
However, the same type of correction as the one discussed in a pre-

vious report (1) would be applicable for the case where the surface

flow could not be neglected.

3.3 Flow of Oxygen Through the Interface

Ariet and Distefano ({) cited experimental evidence in support
of the thesis that the resistance of the gas~liquid interface to the
diffusion of oxygen could be neglected under the flow conditions of
these models. Therefore, the oxygen on the liquid side of the
interface was considered to be in equilibrium with the oxygen on

the gas side.

3.4 Diffusional Transport in the Liquid

The transport of the oxygen molecules from the gas-liquid

interface to thereactive surface is caused by the concentration
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gradient of oxygen in the liquid inside the pore. Whenever a difference
in concentration of a solute exists between two points in a dilﬁte
solution there tends to be a motion of molecules of the solute from

the point of high concentration to the point of low concentration.

This motion can be expressed mathematically by Fick's first law

acA
Naz =~ Pap o o 3.4-1

where NAz is the flux of solute A in the z direction, DAB is the

diffusivity (or the diffusion coefficient) of A in B, and is a
measure of ability of A to move through B. It is a function of the
size and shape of the molecules of solute and solvent, the tempera-
ture, and the physical state of fhe system, C, is the concentration

A
of A in the solution.

3.5 Assumptions of the Mathematical Model

Thg steady-state equations of motion describing the flow of
oxygen from the gas phase to the reacting surface were formulated for
a single cylindrical pore based on the followiné assumptions:

1. The distance which the electrolyte penetrates the pore is so
much greater than the radius of the pore that the liquid in the pore
may be considered a semi-infinite cylinder.

2. The concentration of dissolved oxygen at the interface is
a function of the radius defined and discussed in a previous report (1).

See page 9, B.C. III.
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3. There is no reaction on the pore sufsd=fxe not wetted with
electrolyte.

4, There is instantaneous, complete, anf badirrewr ersible reaction
on the surface wetted with electrolyte.

5. The density of the gas and the diffusitashity of the gas in
the liquid phase as well as the viscosity of thelzhegas are considered
to be functions of temperature only.'

6. In the liquid phase, the oxygen istrsitmspor-ted by ddffusion
only.

7. The model posseses cylindr'ical symetrizty, L . e., no gradients
in the angular direction.

8. The gas phase consists of a pure gs .-. In this investigation,
the‘ calculations are based on pure oxygen.

9. The electrolyte is non-volatile, Inov: other acespects the
properties of the electrolyte are assumed tobe 9 ¢ident A cal with those
of water. This assumption obviates an}; counterdr-rdiffus A on of electrolyte
vapor in the gas phuse.

10. For the mass transfer rates of thisi Iwest- A gation, at the
i nterface, the oxygen in the gas phase is ineqp-QilibrAumwith the
oxygen dissolved in the liquid. The validity offooftiis assumption has
been demonstrated in an earlier report (1).

11. The flow of gas by surface migration tnis negligible. This

assumption was shown to be valid for the conditiiftims o £ this model by

the work of Wengrow (9).
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3.6 Formulation of the Mathematical Model

3.6.1 Flow From Gas Phase to Gas-Liquid Interface

Gas-Liquid
Bulk : ' Interface

Gas
} z=(
%‘
Figure 1. Schematic Diagram of Physical Model
e

The equation which describes the flow of oxygen from the
bulk gas phase to the gas-liquid interface is the same that was

developed by Ariet and Distefano (1).

973 By 7B 1 10133 x 10° x 4R%P | 4RS /2R'TNT
N - &2 _+T THY .3.6-1

AzPG T L 22,400 327
~ mol
Where‘NAzPG flux of A in the pore, in the gas phase, Tm2-sec

T = agbsolute temperature, OK

Ph’Pi = denotes pressures in the bulk gas and at the gas-1liquid

interface, respectively, atm.

Pty
2

= mean pressure, atm.

n = viscosity, poises
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radius of the pore, cm

R =
R' = ideal gas constant,

M = molecular weight.of the gas, gm.
é = constant defined by Carman (4)

3.6.2 Flow From the Gas-lLiquid Interface Through the Liguid
!
Ariet and Distefano showed that the equation describing the

motion of the gas from the gas-liquid interface, through the liquid,
. }

to the reactive site is Laplace's equation in cylindrical coordinates.

3% ¢ ¢
2 r gr 2 °
dr - Oz

This equation is to be solved subject to the following boundary condi=-
tions which can easily be deduced from the assumptions of the model.

0

B.C. 1 At z>0 and r=R, CA(R,z)

B.C. II At r>0 and z=x, CA(r,m) 0

. 0 r?.%
B.C. III At 2=0 and :gR,,CA(r,O) = CA [1- (E) J

If we apply the finite Hankel Transformation (9) to equation 3.6-2

we obtain
2
d 2\ =
Qz-a,j>CA=0 3.6-3
z
" R
whe;e CA =NZ\ rC(r,z) Jocmjr)dr 3.6-4

and aj is defined by the following equation

Jo(ajR) =0 3.6-5
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The solution of equation 3.6-3 is

(-3A = ae %% 4+ Be-i.ajz 3.6-6

If we apply B.C. II, then B = O and

o A2 .
C, = Ae ™} , 3.6-7

If we apply B.C. III and the definition of the finite Hankel Trans-

formation, we have at z = 0,

] S
CA = A =[ rCA [1_(E) } Jo(ocjr)dr 3.6-8
and since this integral is independent of z, we obtain, for any value
of z, . .
R % )
=0,z 0 2.
J[ r <-(R) > Jo(ocjr)dr 3.6-9

Now, let us consider the definition of Sonine's integral (2), where mDo>-1

m-n 1
3_(x) =—n-f—x-———>[ 3_xe)e™ (e hae 3.6-10
2 nf["(m-n
T dr
and if we let t = ¢, dt ——T{’ a,jR =%, n=0and m = 3/2, then
equation 3.6~10 becomes
(a R) = _C«.'Jg)___. RJ (GR E) 5. 1_(};)2 %d_r 3 6_11
3/2 o T R RUTR R :
P(3/2)
J3/2(a,jR) [ r(l-(—)) J (a, r)dr 3.6-12
1"(3/2)R



[wime] (o]

| s |

£ LY

| . | | o | | it | | a—— | | s |

| ]

[ORU—— _...a_.J

11

If we compare the integrals in equations 3.6-9 and 3.6-12 we

see that they are equal, therefore

o 3/2

ce J F(B/'))R
¢ =2

A 2(OLJ'R>3/2 3/2

(oc R)

Now we can apply the definition of the inverse finite Hankel Trans-

formation (9)

2 i Jo(a.rj .
T2 ]2 A’
R~ = LJ (OLJ.R)

to equation 3.6-13 we obtain

, o 3, (ex) CZ e %% 23/2 1 (372) 2
72 jZl {Jl(ajsz YOS I3/2(%R)
oY
¢, = 2321 (3/2) CAZ chz Jo (241 J3/22(O‘3R)
(a0 [;g%nﬁ

Since (2) T (3/2) = (m/8)%

Sl'ﬂa;
s = () (5 )

then equation.3.6-16 becomes
co . -
e ;z J (a.r) (Sln ajR  cos ajR>
A R
=1 {Jl((x R)J .. a’J
Differentiating partially with respect to r we obtain

}: gz J (a L)} <Sin ajR cos a.R
3 - .
@;n)’ [J (@sR) }2 R )

an. since (2)

w

.6-13

.6-14

.6-15

.6-16

.6-17

.6~18

.6-19
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and, if we evaluate this function at r = R, we obtain

~ .

cZ — -0 (~c.) sin a..R

- A z =2¢° Z 2l : < L. cos "“J'R> 3.6-20
A L @

s 2 Jl(ajR) och

Since the toral flow in the r directiom~at r =R fromz = 0 to z = z

is given by
i z ) z
W = [ W 2R dz 3.6-21
§ Ax
i z=0 o ir=R
! 3¢, 4
and since . =D, 7 3.6-22
T r=R =ES =R
then
o]
iz (-e.) sin .R z
: o 1 0s G:R ~Ql.Z
W o= 2 %2m(-D,.) 1 L c08 &R TP, 5.6-23
iz=0 - AT L, (Q;-P)ZJ (a,R) ajR Ao
‘ =1 T LMYy
> s in ¢.R
C oz - sin ¢:R
: -z 3° 7 cos &,R
Wi =4macd o y G > 0 \/ i . 3.6-24
. s) L . AP .
N «w 0] U ™ ‘l’ .
N . - sin ¢.R cos O
W ~ 4y CTOD \—“ 3 : - 3 = J
s - L . R) 73 (@, R
BEN J:LL<O’,JR) Jl(aJR) (OLJ"{) J1<aj*\)
e 3 et "-G'jz cOS (s T\
i o N . Cix
S - it E 3R 1 3.6-25
- w::;‘u, \ou 2) (w R) J- (oc R) )
Tz oecan see thet Lo Lass v cerms of this series become zero when
oy which 45 wh: . . wlen the eleckrolyte penetrates the pore an
Luafinite 13oonic. Laon
i @ )
v R = sin &.R} cos G.R
. R O U i i 1 .
W =il oo 5 - 7 _J 3.6-26
1o=0 oo Lo, RV, (@, R) (@.R) " J,(e:R)
=L 1473 i 1M



[

I

|

L

)

-

H|

—“,i

[ele]  ledle)  Labwe]  Lade]

2]

(i) ] (]

L

* |

13

and since by equation 3.6-3, (ajR) are defined to be the zeros of
the Bessel function of order zerc, let o,jR = x,, then

i ©o ° sin ‘«: cos Xn
W i = 4-'nRC£S D X [ 7 ] 3.6-27
lz=0 ; = bx Ty (xg ) x, " J1(x,)

This series was evaluated in the following manner; the [irst
ten ferms were.summed by an exact computation from a table of the
zeras of J,. The terms from n = 11 to n = 20 were summed by applying
the following approximations which were found to be extremely accurate

for the purpose of this investigation (less than 1% error).

Eor n>10(&)

2 37
r = [ ) g ~ - —— -2
Jl(An) \'m:D cos (xn 4) 3.6-28
and for mw»10 ('5)
x, = r{n ~ zt‘ 3.6-29
i
h J .)--_—._2..__._\:\{‘ .3:. .2‘7 3630
ance 1(xn G (n—l/l')/“‘c §“(n"£;. - 4)} .6~
Lcos !~'/T(11-1) l 2 n-1
27 2= (-1
J =) = ST e - S T 3.6-31
PR ey t? T (n-1/4)"2
1.
9%
Now cos x = cos (n(n—*)) (- 1)n cos -"ZT = (—-l)n Y 3.6-32
. 1,
i - - 2
sin x_ = sin !-W(n—l/ls)} = (-].)n L sin %—r = (-1)" vz 3.6-33
n L 2
then equation 3.6-27 becomes
1.
- 2
© . /. Yoj‘ (-1)® 1 2 (n~l/4)1/2
W = U'T‘\Cq D"’B G.547a1 -x'-) {- 3 350 )
z=0 = { Leil™ T (n—’l/t'+) 7‘_;(-1)

(-1)™ % (a-1/4)1/2 N

3.6-34

" e-1/? L)
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3.6-35

} oo , 1
W = 47Rc® D, }0.54261 + = f
2

I
— +
0 A AB 2 L Uner/ay T2 (n-1/4)3/2]

} =
w| = 4mc® D ) 0.54261 + —1—2 (0.01298 + 0.56571)
z=0 A AB 21T

+-1—22[ — + _%Rssae

2" Ly S(n-1/4) (n-1/4)
. [+ o]
% oo 1 l‘ 1 T
W = 4mRe® D 0.57193 + — + ] '3.6-37
12=0 A AB{ ) n='21"<“'1/4)5/2 (n-1/4)3/2

For the determination of the infinite summation in equation 3.6-37,
the Euler-Maclaurin expansion is invaluable. This expansion is given by

Miller () as

z=1 m~1

c z B k 1

Z £(x) =[ f(g)dg +Z‘ k' [ f(z) - D f(a)] + R(m) 3.6-38
x=a - k='a

where Bk Bernoulli Numbers of the first kind
k-1
k 1 d
£(a) = == £(x)

dx X=a

R(m)~>»0 as m~>®.

iIn the case of z approaching infinity, with f(x) = o where
(x-k)
n is positive, 2m-1
B
k k=1
y m D £(z)
k=a
is zero, and the above expansion can be written
[ 0, .. B
o0
Z £(x) = /\ £(E)aE - z = b £(a) 3.6-39
x=a @ k=1
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Therefore the first term of the infinite summation in equation 3.6-37

can be written as

[oe] co
0 B
1 1 >ﬁ k k-1 1
———— = ——=———=dn ~ =D —_— 3.6-40
;i;1<n-1/4>5/2 hé;_(n_1/4)5/2 . k! (a-1/4)>"2

n=21

The Bernoulli numbers of the first kind are given in Miller (7) as

=X
By = -5

=1
B =%
By =By =By = - =By =0

- L
B, =" 30

——
B = %2
etc

Equation 3.6-40 becomes
2 B B
z 1 _2__1 _[__1___1_____22___1__
273 ‘ 2 7]
Lo e/ 3 a1y ® Uiyt 22 e/
n=21
L2357 1 B 5.7.9 1
29272 .3.2 2.2- 2
1/ w32 20en T T
. 85 si7.9.11 1 -B6 5.7.9.11-13 1 }
- . - . - - ’ . . » -
5432 2.2-2-2 | T2 61 222022 (T
n=21
3.6-41

The expansion on the left hand side of the equation results in
an alternating series which converges very rapidly. Evaluating equation

3.6-41 at n = 21 results in,
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0]
1 1 1 1 5 1
;ﬂ — i 0.00708 + |4 2
L eyayd? 2 20,7595 822 (55 15,772
1 5.7-9 1 ]
L L -t
30443.2.2.2:2 (20. 75)11/2

0.00708 + 0.000256 = 0.00734

Similarly,

0 ' 2m-1

y 1 =[ 1 dn_z Pegel 1
(163221 (am1/0y32 S meuwn?

n= k=1 n=21
- B B
1 1 1 2 1
> =2 — - [ —t e L 2372 m_,._____J
AR 372 o-1/4 . I /w2 2 (a1/5y52
2 1
= = 0.439 + 0.005 = 0.444
}j (n-1/4)>2
n=21

Ty —~—i—~3—/-§ = 1.39487
=1 (n-1/4)

n

hence equation 3.6~36 becomes

o0
W = 4mRCS D, [0.57193 + —= (0.00734 + 1.39487)
_ s Dap 5
2=0 - 277
[oe)
W o 4 RE] D, (0.64296) = 2.57 m R D, ©

If we rewrite equation 3.6-25 as

z fm sin (ajR) cos (ajR) :
ey DABZ [ @RI @R)  (@.RY2. R)J
IZ_O I/J Q’,J 1 j). a;J 1 O(,j

) o)

ji=1 (och)3Jl(ajR) (och)zjl(ajR)

sin (ajR) cos (ajR) )

]

3.6-42

3.6-43

n=21

3.6-45

3.6-46

3.6-47

3.6~48

3.6-49
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it can be seen that the total flow to the walls of the pore is equal
to the flow through the gas-liquid interface only as z approaches
e ~Q;zZ .
infinity, i.e., when e ] approaches zero, the flow through the

: s 0 co
gas-liquid interface equals Wé=0°

Although the first summation in equation 3.6-27 converged so
slowly that the application Euler-Maclaurin expansion was necessary
to perform the summation, the second summation converged very rapidly

-(®,z) B X 3

because of the term e - J °. This second summation was carried out
term by term, and for values of z greater than ope pore radius, four
terms were sufficient to represent the infinite summation.

Values of the flow that reach the pore walls were calculated
for different values of z, and the results are shown in Figure 2,
It can be seen that when z is equal to 2R (electrolyte penetration
of one pore diameter) 99.3% of the flow through the interface reaches
the inside of the pore wall wetted with electrolyte. This is very
significant for porous gas diffusion electrodes for it means that
a pore penetration by the electrolyte of one pore diameter is

sufficient to make the semi-infinite cylinder the effective model.

3.7 Maximum Current Density

The flow of gas through the gas phase and through the gas-liquid
incerface are equal because they are in series. Since the area that
flux is based on is taken to be the same, viz., the cross-sectioned

area of the pore, the flux through the zas phase can be equated to
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Algebraic manipulation of equation 3.7-6 results in
1 5

1-P,
i

5.58 x 107! - 8% [1.29 x 10° R (142,) + 12.1} 3.7-7

Under the restriction that Pi and R be related as in equation
o o]

2=0 at

3 7- . i
3.7-7, we obtain a maximum flux to Fhe pore walls (NAR)max

. . -6 . -

an optimum radius of 2.15 x 10 = ecm. The interfacial pressure
corresponding to this radius was computed to be 0.51 atm. The
maximum £iux to the pore walls under these conditions is, from

equation 3.7-4,

® 5
= 1.32 x 10"° moles/cm?.sec.

(N,p)

AR“max

z=0

Therefore, the maximum current density which can be supported by
mass transfer to a reactive site is (assuming 4 electrons per mole-
cule of oxygen)

(i)

mol 5 amps_sec
) max (NAR)maxl —F 3.86 x 10

mol

z=0 cm .sec.

]

amps
5.1 2

cn.
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4.0 DISCUSSION OF RESULTS

The value for the maximum current density predicted by this
model is approximately three £imes greater than the value obtained
by‘Ariet and Distefano under the assumption of no electrolyte pene-
tration in the pore (semi-infinite annulus) (1). This higher value
may be explained by the fact‘that the liquid phase diffusion path
is shorter when the electrolyte penetrates into the pore than when
the gas has to diffuse into the liquid outside the electrode to get
to ?he annular reactive area. Furthermore, it is conventional to
calculate the current density based‘on the geometric area of the
electrode. The area considered in this case is only the cross-
sectional area of the pore whereas in the case of no penetration
the area is the cross-sectional area of the pore plus the annular
reactive area.

One of the major assumptions of this model is that the liquid
penetrates the pore to such an extent that the pore can be considered
a semi-infinite cylinder. An important questibn immediately arises:
What depth of penetration relative to the pore radius is necessary
to constitute a semi-infinite cylinder? From Figure 2 it can be

-seen that at an electrolyte penetration of one pore radius 92.4 per
cent of the flow through the gas-liquid interface reacts on the
pore wall. At a penetration of only one pore diameter, 99.3 per cent
of this flow reacts on the pore wall. It was concluded from these
results that any penetration depth greater than one pore diameter

is sufficient to constitute a semi-infinite cylinder.

22
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The assumption that the presence of the reaction products on
the reactive sites does not alter the diffusion rates of the oxygen
in the liquid will produce a higher value for the current density :
than the true physical model in which these reaction products will
probably be a serious obstacle to the diffusion of oxygen in the
liquid inside the pore. It should be obvious that as the wet:. - -
proofing agent is oxidized and the liquid penetrates in a pore
whose inner walls are not activated, the diffusion rate of the oxygen
to get to a reactive site will be much slower because the gas will
have to diffuse a longer distance in the liquid where the diffusion
coefficient is much lower than in the gas phase. This will result
in a decrease in the current density. This effect is commonly
referred to as the "drowning" of the electrode. When the inner
walls of the pore are activated, the penetration of the liquid in
th; pore will produce an increase in the current density according
to the results of this study. This seems to indicate that it is
degirable to activate the inner pore walls of porous electrodes

rather than to activate only the outer surface of the electrodes.
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" NOMENCLATURE

Represents component A in the binary system of A and B
Represents component B in the binary system of A and B
Bernoulli numbers of the first kind of order k
Concentration of compouent A at any point (r,z), mol/cm.3

Concentration of component A at any point (r,£), mol/cm.3

Concentration of component A at the point (0,0), mol/cm.3
Diffusivity of A through B, cm?/sec.

Henry's Law constant; atm,

Bessel function of the first kind of order j

Length of pore not penetrated by the liquid

Molecular weight of the gas

Defined by equation 3.6-29

Molar flux of component A in the r-direction at any point (r,z),
moles/cm.2sec.

Total molar flux of component A to the reactive pore site in
the region z=0 to z=z

Molar flux of component A in the z-direction at any point (r,z),
moles/cm.4sec.

Total molar £lux of component A through the gas-liquid interface,
mol/cm.2sec.

Molar flux of component A in the gas-phase area of the inside
of the pore, mol/cm.4sec.

P P
Average pressure in the pore, -h—g;—i , atm.,
Bulk gas pressure, atm

Gas~liquid interfacial pressure, atm
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T Denotes radial direction, cm

R Radius of the pore, cm

R' Gas constant in appropriate units

t Denotes time, sec

T Denotes temperature, °x

1) z:O Total moles of flow to the pore walls in the region z=0 to
z=z, moles/sec.

X Defined by equation 3.6-29

z Denotes axial direction, cm

_ SUBSCRIPTS

A Denotes the component A in the binary mixture of A and B

B Denotes the component B in the binary mixture of A and B

b Denotes. the bulk gas

G Denotes the gas

i Denotes the gas~liquid interface

j Denotes the jth root of the first orde; B;ssel function of
the first kind, Jl(ajR) =0

k Denotes the kth.order Bernoulli number of the first kind, Bk

n Denotes the ntB root of the first order Bessel function of
the first kind, Jy(xp) =0

P Denotes the pore

R Denotes the reactive pore area

r Denotes the radial direction

z Denotes the axial direction
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GREEK SYMBOLS

)

Constant defined by Carman (3)
Viscosity of the gas, poise
Defined by equation 3.6-5

partial pressure of oxygen, atm
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ADDENDUM I

Computation of Concentration Profiles

+

Concentration profiles as a function of r/R with z/R as a
parameter are shown in Figure 3. The values of CA/CZ were cal-
culated from a truncated form of the infinite series in equation
(3). This equation resulted in 2 convergent series containing
alternating terms. In all cases, six or seven terms were sufficient
to insure that the truncated series was an adequate representation

of the infinite series.

28
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Figure 3. Plot of CA/CZ Versus r/R with z/R as a Parameter
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ADDENDUM II

The System Air-Water

It was shown in a previocus report® that for an air-water system,
the oxygen flow through a stagnant layer of nitrogen in the pore can
be calculated using the partial pressure differential of oxygen as
the driving force. When the bulk gas pressure of air is Pb = 1.0 atm
the bulk partial pressure of oxygen is approximately Py = 0.2 atm.

If all other conditions are identical, and the contribution of Poiseuille

flow is neglected, equation 3.7-5 becomes
N,,pe = 12:05 (0.2 - p.) (la)

Equating equations 3.7-4 and(la) results in

~ -11 Py
12.05 (0.2 - p,) =5.58 x 107" ~% (22)

Under the constraint of equation (2a), the optimum pore radius is
) . , . . ,

2.15 x 10 ~ cm, with a corresponding interfacial partial pressure

p; = 0.1 atm. Under these conditions the maximum current density

obtained is 1.0 amp/cmz.

* Ariet, M. and Distefano, G.P., Summary Report No. 8, University
of Florida, March 15, 1963.

30



